Experimental and theoretical perspectives of the Noyori-Ikariya asymmetric transfer hydrogenation of imines.

نویسندگان

  • Jiří Václavík
  • Petr Sot
  • Jan Pecháček
  • Beáta Vilhanová
  • Ondřej Matuška
  • Marek Kuzma
  • Petr Kačer
چکیده

The asymmetric transfer hydrogenation (ATH) of imines catalyzed by the Noyori-Ikariya [RuCl(η6-arene)(N-arylsulfonyl-DPEN)] (DPEN=1,2-diphenylethylene-1,2-diamine) half-sandwich complexes is a research topic that is still being intensively developed. This article focuses on selected aspects of this catalytic system. First, a great deal of attention is devoted to the N-arylsulfonyl moiety of the catalysts in terms of its interaction with protonated imines (substrates) and amines (components of the hydrogen-donor mixture). The second part is oriented toward the role of the η6-coordinated arene. The final part concerns the imine substrate structural modifications and their importance in connection with ATH. Throughout the text, the summary of known findings is complemented with newly-presented ones, which have been approached both experimentally and computationally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.

The discovery and development of conceptually new chiral bifunctional transition metal-based catalysts for asymmetric reactions is described. The chiral bifunctional Ru catalyst was originally developed for asymmetric transfer hydrogenation of ketones and imines and is now successfully applicable to enantioselective C-C bond formation reaction with a wide scope and high practicability. The depr...

متن کامل

Asymmetric transfer hydrogenation of imines and ketones using chiral Ru(II)Cl(η6-p-cymene)[(S,S)-N-TsDPEN] catalyst: a computational study

Noyori et al. in 1996 showed that the Ru(II)Cl(h-pcymene)[N-p-tosyl-1,2-diphenylethylenediamine] (= [RuCl(h-p-cymene)TsDPEN]) in a HCOOH / triethylamine (TEA) mixture was able to efficiently hydrogenate substituted isoquinolines with high enantioselectivity (asymmetric transfer hydrogenation (ATH)) [1]. Almost simultaneously, the same system was reported to reduce ketones superbly by Fujii et a...

متن کامل

Stereoselective Synthesis of α-Arylalkylamines by Glycosylation-induced Asymmetric Addition of Organometallic Compounds to Imines

Arylalkylamines are of interest as building blocks for the synthesis of biologically active compounds and as chiral ligands or chiral auxiliaries in stereoselective syntheses [1]. Their stereoselective synthesis has been achieved by enantioselective reduction of ketimines using chiral reagents [2], as for example Corey’s oxaborolidines [3], or proline-derived triacyloxyborohydrides [4]. Particu...

متن کامل

Asymmetric transfer hydrogenation of imines catalyzed by a polymer-immobilized chiral catalyst.

The asymmetric transfer hydrogenation of imines was performed with the use of a polymer-immobilized chiral catalyst. The chiral catalyst, prepared from crosslinked polystyrene-immobilized chiral 1,2-diamine monosulfonamide, was effective in the asymmetric transfer hydrogenation of N-benzyl imines in CH(2)Cl(2) to give a chiral amine in high yield and good enantioselectivity. Furthermore, an amp...

متن کامل

A Frustrated Lewis Pair Catalyzed Asymmetric Transfer Hydrogenation of Imines Using Ammonia Borane.

Inspired by the zwitterion species generated from the splitting of H2 by frustrated Lewis pairs, we put forward a novel frustrated Lewis pair by the combination of Hδ- and Hδ+ incorporated Lewis acid and base together. Piers' borane and chiral tert-butylsulfinamide were chosen as the FLP, and a metal-free asymmetric transfer hydrogenation of imines was realized with high enantioselectivities. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2014